
FIT History Tours Master Test Plan
10/4/2022



Table of Contents
1. Introduction 3

1.1. Scope 3
1.2. References 3
1.3. Software Overview 3
1.4. Test Overview 3

1.4.1. Organization 4
1.4.2. Master Test Schedule 4
1.4.3. Resources Summary 4
1.4.4. Responsibilities 5
1.4.5. Tools, Techniques, Methods, and Metrics 5

2. Details of the Master Test Plan 5
2.1. Test Processes and Test Level Definitions 5

2.1.1. Management 5
2.1.2. Development 6
2.1.3. Operation 6
2.1.4. Maintenance 11

2.2. Test Documentation Requirements 11
2.3. Test Administration Requirements 12

2.3.1. Anomaly Reporting and Resolution 12
2.3.2. Task Iteration Policy 12
2.3.3. Deviation Policy 12
2.3.4. Control Procedures 13
2.3.5. Standards, Practices, And Conventions 13

2.4. Test Reporting Requirements 13

3. General 13
3.1. Glossary 13
3.2. Document Change Procedures and History 14



1. Introduction

1.1. Scope
This test plan concerns the FIT History Tours app project, and will cover the functional
requirements and specified requirements from performance and external interface sections of
the Software Requirements Specification. The manner in which the application will be tested
along with how the tests will be categorized and errors reported are detailed below. This
document serves to ensure that the reader understands what will be tested and how the overall
plan for testing those items will be carried out. This document will continue to evolve as the
project begins and will be updated according to the guidelines outlined in 3.2.

1.2. References
This is a collection of all items referenced in the FIT History Tours Master Test Plan. This section
is broken into ‘internal’ references which originate from the documents created by our group and
the Florida Institute of Technology. The other ‘external’ references are from other sources.

1.2.1. External References
1.2.1.1. 829-2008 - IEEE Standard for Software and System Test
Documentation: Link
1.2.1.2. Selenium Documentation: Link
1.2.1.3. Markdown Documentation: Link

1.2.2. Internal References
1.2.2.1 FIT History Tours SRS: Link

1.3. Software Overview
The developed software will allow for students, staff, and the public to enter and learn about the
history of the Florida Institute of Technology in-person or virtually. The user will be able to
interact with a map of the campus allowing them to go on “guided tours” or free-roam with a
scrollable timeline to keep them interacting with the campus. The virtual tour will allow
off-campus users to enter into a 360° view of Florida Tech and experience the buildings and
environment while learning about the rich history of the University. The software will use
geolocation to keep track of the user and have a historical database of factoids about the
campus that can be navigated through by the user. This software will not replace the current
admissions tour process nor serve the purpose of introducing prospective students to the
campus prior to enrollment.

1.4. Test Overview
The application will have a diverse feature set with many different areas to test but by using a
black box and white box testing we will aim to test all the major features of the application. This

https://ieeexplore.ieee.org/document/4578383
https://www.selenium.dev/documentation/
https://www.markdownguide.org/getting-started/
https://docs.google.com/document/d/1E6uyc9Hndx_t75ig-ApCGnEWoUAeKx0GrYv6E1lX1_Y/edit?usp=sharing


white and black box testing will be completed after the main goals of the current milestone are
completed by group members. While a solid schedule can’t be provided, it would be ideal to get
a week before each milestone is due to test so improvements and fixes can be implemented.
Selenium and other frameworks will be utilized to keep all testing as consistent across versions
of the application as new features are implemented. Each group member will be responsible for
testing their own additions to the application but during the final week, each member will
dynamically test parts of the entire application.

1.4.1. Organization
FIT History Tours is a group of students in completing their Senior Design Project at
Florida Tech. The group members communicate through text chat in the appropriate
channel in a private Discord server for development and interactions. Testing will be
conducted throughout the development cycle of the application. Each individual group
member will be responsible for testing the features and functionality added to the
application while it is being developed. Once that change has been pushed to the core
repository, other group members will check the code before it is added to the main
production branch. A week before each milestone is due, the group plans to do a
thorough series of tests split among the group to check the features added by others. If
there is a bug or error found in implemented features, it should be reported on the main
repository and will be posted automatically into the #bug-finds channel on Discord. This
will alert the individual to the need to investigate the bug that was found. All members
can be reached by one another and there is no hierarchy of reporting.

1.4.2. Master Test Schedule
During the development of new features and patches, all code added or removed will be
built into a new version of the application the developer will test before committing it to
the main code repository. The code will then be committed to the main repository and a
member of the group will be assigned to check over that code and approve its addition to
the production codebase. Full group testing will hopefully be done the week before a
milestone is due to ensure that any bugs are found and errors can be fixed before the
feature-set is demonstrated to instructors and clients. Previous tests should be run again
when a new feature is implemented to ensure it hasn’t broken previously implemented
functionality.

1.4.3. Resources Summary
All tests will be primarily within the group but external clients may be asked to test
different requirements depending on the need for external input. One of the tools that will
be utilized for testing is Selenium which allows for automation of testing for web
applications. This functionality will allow automated test suites to run after code changes
are pushed or ensure that functionality is still the same after an update. Other
automation and testing tools may be utilized and this document will be updated
accordingly. All group members have access to all systems that will be utilized to make



the application run (virtual machine, database, public DNS records) so that all members
can test any area of the application they may be working on.

1.4.4. Responsibilities
All group members are responsible for testing their own code bases before committing to
the main codebase. Another randomly assigned member will look that code over to
ensure that it is correct. During the main testing, all group members will complete a test
suite to ensure that as much of the application is thoroughly tested as possible.

1.4.5. Tools, Techniques, Methods, and Metrics
Throughout the testing process, the group will utilize black box and white box testing to
ensure that all areas of the user interface and codebase are effectively tested. A variety
of physical testing will need to be done during black box testing to ensure that the
application's geolocation features are both accurate and working correctly while the user
moves around the Florida Tech campus. The “virtual tours” feature will also need
extensive black box testing to ensure the data collected from the Google Maps API and
database geolocation points provide and correct historical facts and mimic moving
around the Florida Tech campus. The white box testing conducted will need to ensure
that the internal functions of the applications are passing data smoothly between
different pieces of the application while making sure that data is error checked. This
white and black box testing will be completed after the main goals of the current
milestone are completed by group members. These techniques will help the group to
keep track of all elements of the codebase and user interface. To prevent all of the
testing from being manual, the use of Selenium will help with some black box testing to
keep automated test cases for simple and scriptable tasks within the application. The
metrics will be recorded in decision tables for black box testing and both linting and unit
testing documentation built after testing. These metrics will be recorded along with the
central codebase and other updates to the project during that time.

2. Details of the Master Test Plan

2.1. Test Processes and Test Level Definitions
The processes applicable to our development lifecycle include:

2.1.1. Management
The administration of our project in its entirety as well as the testing efforts performed in
parallel to development necessitate the presence of a MTP (this document) and
evaluation of the level tests and their corresponding documentation periodically
throughout the project lifecycle.



2.1.2. Development
During the development process the codebase will be created. Prior to acceptance and
commitment to the shared repository, code will be statically tested on the following
criteria:

2.1.2.1. The code is complete and all syntactical requirements are met.
2.1.2.2. The code is annotated to explain functionality and purpose.
2.1.2.3. The code is traceable to requirements found in the SRS and the SRS is
updated if code generates new requirements.
2.1.2.4. The code is modular, i.e. each independent component is cohesive and
components are coupled at less than or equal to two locations with a probability
of 75%.
2.1.2.5. The code is readable and follows a consistent style.

2.1.3. Operation
Operational testing of prototypes will generate the greatest number of test cases in the
pursuit of requirements verification. The testing phase will map as directly to the
requirements as possible, with our naming convention referring to the corresponding
“shall” statement from the SRS by number. Our test suite includes:

2.1.3.1. Functional Testing
Test Set (3.2.2)

Test Case (3.2.2.1., 3.2.2.2)

Goal The user starts the app and initiates a walking tour.

Precond. The app is installed on mobile or a compatible browser version
is in use. The user is on the Florida Tech campus.

Input/Output Accept guided tour prompt/Geolocation data, UI updates

Postcond. The app will begin guiding the user on a tour following the
preset tour order. A guideline will display on the roadmap.

Comments This test case can fail safely by exiting to Free Roam mode on
error.

Test Case (3.2.2.1.2, 3.2.2.2.2)

Goal The user starts the app and initiates a virtual tour.

Precond. The app is installed on mobile or a compatible browser version
is in use.



Input/Output Reject location service or Located off campus/UI updates, Text
and Images

Postcond. The app will begin guiding the user on a tour following the
preset tour order. A point of interest will begin expositing
information.

Comments This case ensures that the alternative tour experience is
accessible on start-up

Test Set (3.2.3)

Test Case (3.2.3.1.)

Goal The user can navigate to a point of interest using campus
pathways.

Precond. Application is open and a guided tour has been initiated.

Input/Output Geolocation data, Accelerometer data/UI updates

Postcond. The user arrives at point of interest, software stops giving
directions to the point of interest.

Comments This case is looking to verify map display accuracy.

Test Case (3.2.3.2., 3.2.3.3, 3.2.3.4)

Goal The user can activate a point of interest and continue a tour.

Precond. Guided tour in progress.

Input/Output Geolocation data, Accelerometer data/UI, Text, Images

Postcond. The software displays information about the nearby point of
interest and suggests next location to explore.

Comments

Test Set (3.2.4.)

Test Case (3.2.4.1., 3.2.4.4)

Goal The user can begin a tour from Free Roam.

Precond. App is open, No Tours in progress.

Input/Output Select Guided or Virtual Tour/UI mode change



Postcond. The software begins a walking or virtual tour.

Comments

Test Case (3.2.4.2., 3.2.4.3.)

Goal The user can select any point of interest for information or
directions.

Precond. App is open, No tours in progress.

Input/Output Select Point of Interest on Map/UI update, Text, Images

Postcond. The software displays historical content for the point of interest,
and directs the user if requested.

Comments

Test Set (3.2.5.)

Test Case (3.2.5.1., 3.2.5.2)

Goal The software guides users through a virtual tour using a
predetermined start point.

Precond. App is open.

Input/Output Select Virtual Tour/Map UI updates, Historical Content Display

Postcond. The Clemente Center is targeted and historical content for the
point of interest is displayed.

Comments

Test Case (3.2.5.2.1., 3.2.5.3.)

Goal The user can navigate a virtual tour to learn more.

Precond. App is Open, Virtual Tour in Progress

Input/Output Navigate timeline or Select Next button/UI updates, Content
Display updates

Postcond. The user is shown new historical content on the selected point
of interest, or moves onto next point of interest.

Comments



Test Set (3.2.6)

Test Case (3.2.6.1.)

Goal The user can begin a scavenger hunt on-campus.

Precond. App is Open, Geolocation accepted, User is on campus
grounds.

Input/Output Select Scavenger Hunt, Geolocation data/UI hints and
objectives

Postcond. The user is guided to identify details about the nearest point of
interest.

Comments

Test Case (3.2.6.2.2.)

Goal The user discovers the nearest point of interest as part of the
scavenger hunt.

Precond. App is Open, Scavenger hunt in progress, >15 meters away
from point of interest.

Input/Output Geolocation data/UI hints and guidance

Postcond. The user can locate and approach the targeted point of interest
by hints or gps directions.

Comments

Test Case (3.2.6.2.1.)

Goal The user explores around a point of interest to learn historical
content.

Precond. App is Open, Scavenger hunt started, <=15 meters away from
point of interest.

Input/Output Select answers to question or objectives/UI updates and hints

Postcond. The user discovers a fact about the targeted point of interest,
and a new location is targeted.

Comments

2.1.3.2. Performance Testing
Test Set (3.3.1)



Test Case (3.3.1.1., 3.3.1.2.)

Goal >=20 users can access the appserver simultaneously for tours
and historical content.

Precond. >=20 user test devices or clients open the app and initiate a
tour.

Input/Output Client GET requests/Server responses

Postcond. The server can service all users asynchronously in tours across
the campus.

Comments

Test Case (3.3.1.3.)

Goal Users can stream audio files from the server without loss of
service.

Precond. User device compatible and has a speaker, App is open

Input/Output Client audio requests/Server audio stream

Postcond. Server can supply stream bandwidth of >= 8Mbps.

Comments

Test Set (3.3.2.)

Test Case (3.3.2.1., 3.3.2.4.)

Goal Location services can be processed frequently and quickly.

Precond. Client connection with geolocation services enabled.

Input/Output Client location information/Server update response

Postcond. Clients can receive updated location representation in <= 1.5
seconds utilizing <= 20% processing power of local device.

Comments

Test Case (3.3.2.2., 3.3.2.3.)

Goal Users receive rapid response from the client application when
supplying input.



Precond. Device is compatible, App is installed

Input/Output User opens app or interacts with UI/UI response and update

Postcond. Client-side input response time <= 1 second.

Comments

Test Case (3.3.2.5., 3.3.2.6.)

Goal The user can scroll quickly and the app will load information at
pace.

Precond. Device compatible, App is open and timeline enabled.

Input/Output User scrolls along timeline/UI loads info and images

Postcond. Textual and Image content should display in <= 1 second when
pulled from server.

Comments

2.1.4. Maintenance
Following the deployment of our application, the capacity to repair and update our
implementation is paramount. The Anomaly Reporting and Resolution policy [2.3.1.] is
the initiative by which modifications to production code can be proposed and evaluated.
Any changed or newly implemented code resulting from an Anomaly Report will
necessarily undergo the same static scrutinization defined in the Development process
[2.1.2.] prior to verification by Operational test cases [2.1.3.]. Tests traced to a
requirement that is refined through Maintenance and Anomaly Reporting will receive
updates to reflect any changes and remain consistent.

2.2. Test Documentation Requirements

All testing documentation should be able to be described as clear and thorough. The purpose of
the test documentation is to ensure that all members of the group understand and know what
parts of the software have been tested and what parts of the software need to be tested. The
test documentation should clearly state what parts of the software is being tested, how it’s been
tested (including inputs if applicable), and the results of said tests (including the outputs if
applicable). In theory, any other member of the group should be able to follow another
member’s documentation to reproduce the results, as so they too can understand it, especially if
the results are unexpected or error prone. The testing documentation should also serve to make



sure that two members of the group don’t test the same aspect of the software. This is to save
on time and resources, as unless needed, individual members should work on different aspects
of the software to ensure that as much of it is working as expected and free of errors that hurt
the user experience.

2.3. Test Administration Requirements

2.3.1. Anomaly Reporting and Resolution
If there are any anomalies found in the software while it is being tested, an issue should
be opened on the main repository with the following information:
- What version of the application are you running?
- What browser/device and version are you using?
- What were you trying to do?
- What did you expect to happen?
- What actually happened?
- What are the steps to reproduce this error?
- Anything else?
These questions will provide the developer with the necessary information to begin
investigating the reported bug in the application. Among the group, we will tag the
corresponding member that will go solve the issue in the codebase or explain to the
group why it may not actually be correct. An anomaly should be closed within a week of
reporting but this may be extended if the group member has other external
circumstances that have been shared with the group. If the issue isn’t something to be
publicly shared, the group should still be informed that it won’t be completed on time but
specifics are never required.

2.3.2. Task Iteration Policy
The fixed anomaly should continue to be tested for the next milestone and depending on
the severity of the anomaly on the application, potentially more milestones. If testing the
anomaly will cause extra strain on the hosting platform, it should be discussed with the
group to prevent extra costs from being incurred.

2.3.3. Deviation Policy
This policy may be deviated from if a member needs immediate help with an issue while
they are working on the production codebase or if the development codebase has
stopped working with recent updates. Inquiring the developer by a direct tag in Discord
based on the latest commit to the code and working backwards will be the main way that
the group will work to get the codebase working properly once again. Tagging an
individual in Discord should only be done in the case of great urgency or if the group is
collectively working together during a specified time.



2.3.4. Control Procedures
The production environment should be used to try and recreate the anomaly that was
reported. Other information such as operating system, browser, and other information
reported on the anomaly should be mimicked as closely as possible. Due to budget
constraints and personal devices being different, the issue may need to be replicated on
the same device for the developer if the anomaly can’t be recreated by them locally.

2.3.5. Standards, Practices, And Conventions
All reporting should be fair and not attack members of the group under any
circumstances. Repeated comments and reports of this sort should be reported to the
professor of the class or another member of the Florida Tech faculty.

2.4. Test Reporting Requirements
All testing reports should be relayed into the group Discord for archival and communication
purposes to the rest of the group. This channel will allow all members to see the test report and
go back to it at later times to ensure it is accurate and something that had previously been
tested to prevent adding it to the test suite multiple times at different locations. These should be
properly formatted in a file format that is directly readable in the default Discord text channel.
The preferred report would be posted in Markdown with information correctly formatted in the
desired method for the type of testing run. These reports should have logs of the test and the
anomalies reported. Any issues found should be referenced by codebase issue number so that
as anomalies get fixed the test reports can reflect that information.

3. General
This section contains a glossary of terms referenced throughout the Master Test Plan and the
correct method for updating and versioning this document.

3.1. Glossary

UI User Interface

Florida Tech, FIT Abbreviation for Florida Institute of Technology

Hosting Platform Platform used to host the web application (Amazon Web
Services, Google Cloud Compute, DigitalOcean)



3.2. Document Change Procedures and History
Document history will be kept by Google Documents automatic versioning history. Upon a
version being updated to finished state with updated information, the document will be
redistributed to our website with an updated version and date on the title page. The old
documents will be stored on the website but not directly addressable to the public via the
included hyperlinks provided on the front page.

http://fit-history-app.github.io

